基于温敏变色材料的红外智能窗制备及性能研究文献综述

 2023-08-03 11:29:30
  1. 文献综述(或调研报告):

热致变色智能窗根据使用材料的种类可以分为无机材料[14,15]、有机材料[16,17]、无机-有机复合材料[9,18]。其中无机材料研究最比较多的是金属氧化物二氧化钒(VO2[14,15]和钙钛矿材料[19,20]等,有机材料主要研究的材料有聚(N-异丙基丙烯酰胺)(PNIPAM)[16,17]、羟丙基纤维素(HPC)[21]等,无机-有机复合材料目前研究的有VO2与PNIPAM复合材料[9,18]等。

研究者们在改善VO2的使用性能方面做出了大量的努力。Hao[22]等制备了VO2(M)/TiN混合涂层,这种涂层在室温附近实现了近红外光的有效透过与屏蔽,性能相比纯VO2(M)有较大提升。此外,由于纯VO2(M)相变温度较高,Zhao[23]等将W元素掺杂到VO2(M)薄膜中,W6 离子的引入引起了晶格畸变,并且使VO2(M)内部电子密度增加,从而降低了相变温度。此外,Fe[24]、Al[25]、B[26]和Fe/Mg[27]等元素掺杂或元素共掺杂的方式也能降低VO2的相变温度。此外,VO2由于其高反射,在可见光波段透过率不到40%,故通常采用在VO2薄膜上沉积减反射层的方法来增透。Xu[28]等采用可移动的水作减反射层制备的VO2/H2O多层薄膜展示了高达18.2%的光调制能力,并且可见光透过率相比纯 VO2也有所提高;此外,还可以借助水的挥发与凝结来达到一种多模式调控的效果。

PNIPAM是一种温度响应型聚合物,其低临界溶解温度(LCST)为32℃。当温度小于32℃时,PNIPAM分子内部的酰胺基与水分子之间存在较强的氢键作用,从而表现出良好的亲水性,凝胶呈现一种溶胀状态,水溶液保持透明;当温度升高到32℃时,凝胶的疏水作用增强,高分子链剧烈收缩并相互缠结,导致溶液变得不透明[8]。这种近室温转变的特性使得它很适合用作智能窗材料。但是,仍有很多问题制约着PNIPAM的实际应用,比如亲疏水性的转变会引起薄膜的收缩和扩张从而影响智能的完整性;此外,PNIPAM响应速度过慢以及高温下处于完全不透明状态也会严重影响智能窗的使用性能。为了改善PNIPAM响应速度过慢的问题,Lee H Y[16]等将ATO(10%原子含量Sb掺杂SnO2)与PNIPAM混合制制备一种杂化水凝胶,由于ATO纳米粒子所具有的局部表面等离子体共振(LSPR)使得它具有很强的近红外吸收能力,所以制备的水凝胶能够同时对光和热响应,从而使水凝胶的响应速度加快。但是,PNIPAM的其他缺点还制约着其使用,因此还需要进行广泛研究。

此外, VO2/PNIPAM有机无机复合材料能够结合两种材料的优点,因此也吸引了研究者的关注。Zhou[9]等首次将无机材料与有机材料相结合来制备智能窗材料,他们制备的VO2 /PNIPAM复合纳米热致变色材料太阳光调制能力达到34.7%,并且平均可见光透过率维持在62.6%,性能均优于所使用的无机材料和有机材料。但是VO2 /PNIPAM复合材料的实际应用还受限于两种材料本身的缺陷,所以还需要对两种材料进行改性研究。

四、方案(设计方案、或研究方案、研制方案)论证:

主要的研究内容:

(1)采用VO2本征改性的方法,从VO2制备方法上入手,利用溶剂热法,水热法,磁控溅射等方法制备不同结构的VO2基纳米薄膜;

(2)对VO2进行新的元素掺杂,寻找能够在低掺杂条件下大幅降低VO2相变温度并且VO2其他性能较少降低的元素;

(3)在玻璃衬底上沉积减反射层,并在VO2表面沉积保护层,探究这种三明治结构对VO2用作智能窗性能的影响;

(4)对VO2进行杂化复合,将具有光电磁等效应的特殊粒子与VO2进行复合,探究这些粒子对VO2性能的影响,并寻求其规律;

(5)将以上两种或多种方法进行有机复合,或者将电致变色等不同机理与热致变色相结合,寻求改善VO2性能的最佳途径。

参考文献

  1. Khandelwal H , Schenning A P H J , Debije M G . Infrared regulating smart window based on organic materials[J]. Advanced Energy Materials, 2017, 7(14): 1602209.
  2. Ke Y , Wen X , Zhao D , et al. Controllable fabrication of two-dimensional patterned VO2 nanoparticle, nanodome, and nanonet arrays with tunable temperature-dependent localized surface plasmon resonance[J]. ACS Nano, 2017, 11(7): 7542-7551.
  3. Wang L , Liu Y , Zhan X , et al. Photochromic transparent wood for photo-switchable smart window applications[J]. Journal of Materials Chemistry C, 2019, 7: 8649-8654.
  4. Jong K M , Gabriel S E , Soo K Y . Enhanced efficiency of functional smart window with solar wavelength conversion phosphor–photochromic hybrid film[J]. ACS Omega, 2018, 3(8): 9505-9512.
  5. Shengliang Z , Sheng C , Tianran Z , et al. Al3 intercalation/de-intercalation-enabled dual-band electrochromic smart windows with high optical modulation, quick response and long cycle life[J]. Energy amp; Environmental Science, 2018, 11: 2884-2892.
  6. Wu L , Fang H , Zheng C , et al. A multifunctional smart window: detecting ultraviolet radiation and regulating the spectrum automatically[J]. Journal of Materials Chemistry C, 2019, 7(34): 10446-10453.
  7. Lin Y , Zhe Q , Zili P , et al. Three-layered hollow nanospheres based coatings with ultrahigh-performance of energy-saving, antireflection, and self-cleaning for smart windows[J]. Small, 2018, 14(34): 1801661.
  8. Zhou Y , Layani M , Wang S , et al. Fully printed flexible smart hybrid hydrogels[J]. Advanced Functional Materials, 2018, 28(9): 1705365.
  9. Zhou, Y., et al. VO2/hydrogel hybrid nanothermochromic material with ultra-high solar modulation and luminous transmission[J]. Journal of Materials Chemistry A, 2015, 3(3): 1121-1126.
  10. Chen Z , Gao Y , Kang L , et al. VO2-based double-layered films for smart windows: Optical design, all-solution preparation and improved properties[J]. Solar Energy Materials and Solar Cells, 2011, 95(9): 2677-2684.
  11. Zhou J , Gao Y. Zhang Z , et al. VO2 thermochromic smart window for energy savings and generation[J]. Scientific Reports, 2013, 3.

[12] J. Nag, R.F. Haglund, Journal of Physics: Condensed Matter 20 (2008) 264016.

[13] R. Balu, P.V. Ashrit, Applied Physics Letters 92 (2008) 021904.

[14]Long, S., et al. Application-oriented VO2 thermochromic coatings with composite structures: Optimized optical performance and robust fatigue properties. Sol. Energy Mater. Sol. Cells, 2019, 189: 138-148.

[15]Hoshino, H., et al. Infrared-light switching in highly oriented VO2 films on ZnO-buffered glasses with controlled phase transition temperatures. Sol. Energy Mater. Sol. Cells, 2019, 191: 9-14.

[16]Lee H Y , Cai Y , Bi S , et al. A dual-responsive nanocomposite toward climate-adaptable solar modulation for energy-saving smart windows[J]. ACS Applied Materials amp; Interfaces, 2017, 9(7): 6054-6063.

[17]Zhu, H. and L. Y. Wang. Smart window based on Cu7S4/hydrogel composites with fast photothermal response[J]. Solar Energy Materials and Solar Cells, 2019, 202:110109.

[18]Wang Y , Zhao F , Wang J , et al. VO2@SiO2/poly(N-isopropylacrylamide) hybrid nanothermochromic microgels for smart window[J]. Industrial amp; Engineering Chemistry Research, 2018, 57(38): 12801-12808.

[19]Lin, J., et al. Thermochromic halide perovskite solar cells[J]. Nat. Mater. 2018, 17(3): 261-267.

[20]De Bastiani, M., et al. Thermochromic perovskite inks for reversible scmart window applications[J]. Chem. Mater., 2017, 29(8): 3367-3370.

[21]Nakamura, C., et al. Thermoresponsive, freezing-resistant smart windows with adjustable transition temperature made from hydroxypropyl cellulose and glycerol. Ind. Eng. Chem. Res., 2019, 58(16): 6424-6428.

[22]Hao Q , Li W , Xu H , et al. VO2/TiN plasmonic thermochromic smart coatings for room-temperature applications[J]. Advanced Materials, 2018, 30(10): 1705421.

[23]Zhao C , Tao H , Peng F , et al. Thermochromic performances of tungsten-doping porous VO2thin films[J]. Journal of Sol-Gel Science and Technology, 2016, 78(3): 582-588.

[24]Lu, L., et al. Effect of Fe doping on thermochromic properties of VO2 films[J]. J. Mater. Sci. Mater. Electron.,2018, 29(7): 5501-5508.

[25]Ji, C., et al. Al-doped VO2 films as smart window coatings: Reduced phase transition temperature and improved thermochromic performance[J]. Sol. Energy Mater. Sol. Cells, 2018, 176: 174-180.

[26]Zhou, Q., et al. Boron doped M-phase VO2 nanoparticles with low metal-insulator phase transition temperature for smart windows[J]. Ceramics International, 2019.

[27]Ji, C., et al. High thermochromic performance of Fe/Mg co-doped VO2 thin films for smart window applications[J]. J. Mater. Chem. C, 2018, 6(24): 6502-6509.

[28]Xu, F., et al. Highly enhanced thermochromic performance of VO2 film using 'movable' antireflective coatings[J]. ACS applied materials amp; interfaces, 2019, 11(5): 4712-4718.

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

课题毕业论文、开题报告、任务书、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。