16000DWT成品油轮机舱设备选型和布置设计外文翻译资料

 2022-09-20 10:44:03

英语原文共 30 页,剩余内容已隐藏,支付完成后下载完整资料


1. Introduction

1.介绍

The ocean is the highway for international trade, with 90% being seaborne. Despite the long lasted reputation of the shipping Industry as the most energy efficient mode of freight transport, treating shipping within the context of global environmental concerns gained significant momentum over the last 10 years.

海洋作为国际贸易的高速通道,海运占了其中的90%。尽管长期以来航运业都以最为节能的货运方式而驰名,但在过去10年里,全球环境问题的处理在世界范围内得到了显著的发展与关注。

The Kyoto protocol legacy that bunker fuel emissions produced within international waters may be excluded from national targets,The increasing effects of globalization and the global 2°C temperature target decrease (UNFCCC,2009) imply that the international maritime community should consider the strategic technology paths for energy decarbonisation by 2060.

根据早期签署的京都议定书的规定,公海内的船用重油排放物是不受限于国家指标的。

而日益增加的全球化影响和“未来全球降低2℃”的目标(UNFCCC,2009)的制定,都表明国际海事界应该考虑到2060年的能源脱碳战略技术路径。

Over the medium to long term stabilization of CO2 concentrations at a level that prevents dangerous anthropogenic interference with the climate system would require a radical innovation regime. The later should aim toward the implementation of advanced energy systems and growth of some new technologies.

想要通过避免人为活动干扰气候的危险行为,来将二氧化碳的浓度长期维持在一个稳定水平,则需要一套革命性的新排放制度。未来的目标应该是朝着实施先进的能源系统和一些新技术的发展。

Considering shippings reliance on heavy fuel oil and the expected high rates of growth (Lloyds Register et al., 2013), it is fare to accept that alternative sources of energy could help with this transformation. Hirdaris and Cheng (2012) suggest that some decarburization solutions may be associated with substitution of renewable energy (e.g. wind, solar) for fuel oil.

考虑航运对重油的依赖以及其预期的高增长率(劳埃德的登记等,2013),用替代能源来帮助这一转变是可行的。 Hirdaris 和成(2012)认为脱碳溶液与可再生能源(例如风能、太阳能替代相关)燃料油都是不错的选择。

Other solutions may involve alternative energy resources that are dependent on fossil carbon (e.g. natural gas) or the harvesting of non-fossil carbon resources (e.g. biofuels). Without any intend to underestimate the benefits of those, it would be only sensible to also consider the nuclear engineering option as a promising alternative with minimal detrimental emissions(CO2, NOx, SOx).

其他的解决方案可能涉及的替代能源资源,是依赖于化石碳(如天然气)或收获的非化石碳资源(如生物燃料)。在考虑了这些方式的优势处之后,核工程作为一个有害排放最低(CO2, NOx, SOx).并且很有前途的替代方式,也是很明智的选择。

Nuclear powered ships, operated by the international naval and Russian icebreaker sectors,have been a reality for over 50 years. Since the first nuclear submarine,about 700 nuclear reactors operated at sea on various vessels. Whereas the limited or unknown safety records of Russian nuclear fleet raise some concern ( Reistad et al., 2008; lgaard, 2001)

核动力船舶被用于国际海军和俄罗斯破冰船已经超过50年了。自从第一艘核潜艇以来,有大约700个带有核反应堆的不同种类的海上船舶。但俄罗斯核舰队的一些不确定性和为止安全的报告也引起了人们关注( Reistad et al., 2008; lgaard, 2001)

it is estimated that the western world, primarily led by the USA Naval sector, has to date accumulated over 6200 reactor-years of operational experience involving 526 nuclear reactor cores (WNA, 2012). Despite the successful implementation of traditional nuclear reactor options one aspect that escaped the attention of the commercial industry sector is the use of Small Modular Reactor (SMR) technology onboard ocean going vessels.

据估计,在西方国家由美国海军牵头部门为主,至今已有超过 6200 堆/年 的运行经验积累,涉及526个核反应堆的核心作用(美国,2012)。传统核反应堆的成功应用引起了商业化的关注,即小型模块化反应堆(SMR)在远洋船舶中的应用。

Following a brief review of existing nuclear marine propulsion options this paper summarises the efforts of an industry led consortium to explore the feasibility of developing a commercially viable concept for a Suezmax Tanker able to carry oil cargoes based on a conventional hull form but with alternative arrangements accommodating for the 70 MW Gen4Energy SMR propulsion plant. This vessel choice does not underestimate the importance of exploring the feasibility of future application of SMR technology to other ship types or FOIs.

在简要回顾了现有的核动力方案后,本文总结了一个工业巨头联合财团探索——基于常规船型油类货物船,但适用于装载70兆瓦的Gen4energy SMR推进装置苏伊士型油船其商业上可行的概念的可行性。这个船型的选择考虑到SMR技术探索在其他类型船舶的应用,以及未来应用的可行性和重要性。

Yet, it helps to explore the potential of modern nuclear propulsion against a realistic technical background. The paper reviews past and recent advances, outlines the basics of Gen4Energy SMR technology and describes the rational behind some of the possible concept design choices A brief discussion on the need for future research and development activities attempts to shed some light on the barriers that the industry will have to overcome over the long term.

然而,它有助于探索潜在现代的技术背景下核推进技术的潜力。本文回顾了过去和最近的进展,概述了gen4energy SMR技术的基本知识,介绍了理性背后的一些概念设计的选择可能对未来的研究和发展活动,试图对该行业将不得不克服长期障碍揭示需要一个简短的讨论。

2.The potential of nuclear marine propulsion

2.核动力推进的潜力

To realise the importance of considering modern nuclear marine propulsion technology options it is important to appreciate the global impact of anthropogenic emissions induced by the international shipping sector. In recent years, different approaches for estimating the overall global shipping emissions have been presented emissions have been presented (e.g. IMO, 2009; Paxian et al., 2010).

要意识到现代海洋核推进技术的重要性,它的重要性在于了解全球人为排放量的影响,引起的国际航运部门关注。近年来,有关全球航运的排放提出了不同的排放方法(例如IMO,2009;Paxian,2010)。

Walsh and Bows (2012) explain that the availability and range emission factors for shipping are still susceptible to some uncertainty related with the s

剩余内容已隐藏,支付完成后下载完整资料


资料编号:[148275],资料为PDF文档或Word文档,PDF文档可免费转换为Word

您需要先支付 30元 才能查看全部内容!立即支付

课题毕业论文、开题报告、任务书、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。