1. 研究目的与意义(文献综述)
2. 研究的基本内容与方案
2.1基本内容
(1)学习并掌握python程序设计;
3. 研究计划与安排
(1)2020/1/13—2020/2/28:确定选题,查阅文献,外文翻译和撰写开题报告;
(2)2020/3/1—2020/4/30:catboost算法设计与实现、模型训练、模型测试与实验分析;
4. 参考文献(12篇以上)
[1]prokhorenkova, liudmila, gleb gusev,aleksandr vorobev, anna veronika dorogush, and andrey gulin. "catboost:unbiased boosting with categorical features." in advances in neuralinformation processing systems, pp. 6638-6648. 2018.
[2]chen, tianqi, and carlos guestrin."xgboost: a scalable tree boosting system." in proceedings of the22nd acm sigkdd international conference on knowledge discovery and datamining, pp. 785-794. 2016.
[3]ke, guolin, qi meng, thomas finley,taifeng wang, wei chen, weidong ma, qiwei ye, and tie-yan liu. "lightgbm:a highly efficient gradient boosting decision tree." in advances in neuralinformation processing systems, pp. 3146-3154. 2017.
课题毕业论文、开题报告、任务书、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。